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The reflection and transmission theories of waves in pyroelectric and piezoelectric

medium are studied in this paper. In general in an infinite homogeneous pyroelectric

medium there are four bulk wave modes: quasi-longitudinal, two quasi-transversal

and temperature waves. In an infinite homogeneous piezoelectric medium there are

reflection and transmission problem there are five complex boundary conditions in the

pyroelectric medium and four complex boundary conditions for the piezoelectric

medium. In this paper, we find that the surface waves will be revealed in the reflection

and transmission wave problem. The surface waves have the same wave vector

component with the incident waves on the interface plane. The two dimensional

reflection problem of waves at the interface between the semi-infinite pyroelectric

medium and vacuum is researched in greater detail and a numerical example is given.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The propagation theory of waves in elasticity and thermoelasticity is completely solved many years ago [1], but the
literatures of the reflection and transmission problem in piezoelectric and pyroelectric materials are few. In appendix of a
paper, Wang [2] discussed the reflection and transmission problem on the interface in piezoelectric materials under the
dynamic antiplane mechanical loading. Burkov et al. [3] discussed the reflection and transmission of bulk acoustic waves in
piezoelectric materials under the action of an external electric field. In their studies they got the wave vector and their
corresponding wave amplitudes from the Christoffel’s equation at first, then they added the amplitudes of all wave modes
of the electric potential together and multiplied it by a new amplitude constant. So they could get all the amplitudes of
different wave modes through the interface continuum conditions. However, the solution obtained by this method did not
satisfy the momentum equation, because the momentum equation gives a certain relation between the amplitudes of
displacements and electric potential. Sharma et al. [4] discussed the reflection of piezothermoelastic waves. In their theory,
the amplitude coefficients of waves are related to the positions on the interface. The main puzzle in the reflection and
transmission theory of waves in piezoelectric and pyroelectric materials is that the electric potential has not its own
independent wave mode under the postulation of quasi-static electric field [5–7]. Kyame [8] discussed a special case of
piezoelectric wave. In his discussion he abandoned the postulation of the quasi-static electric field. He let the
displacements and electric potential satisfy all the piezoelectric equations and Maxwell electro-dynamic equations.
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However, the velocities of the elastic waves are much less than the velocities of the electromagnetic waves, so these two
physical phenomena are difficult to couple each other.

In the geophysical field the inhomogeneous wave theory has been extensively researched for the viscoelastic media [9–12].
As in the previous paper [6,7] in this paper we introduce this theory into the pyroelectric and piezoelectric materials.

To solve the reflection and transmission problem of inhomogeneous waves in piezoelectric and pyroelectric materials, we
[16] found that an extra independent surface wave is revealed on each side of the boundary surface except the bulk reflection
waves and the bulk transmission waves. The surface wave has the same wave vector component with the component of bulk
wave along the interface (along the x1 direction). In this paper the reflection problem from the interface of the pyroelectric
material and vacuum is studied in detail and some numerical results are given. In two dimensional reflection problem there is
only one quasi-transversal wave, so there are only three wave modes in pyroelectric materials and two wave modes in
piezoelectric materials. Our numerical researches show that the surface wave exists certainly in the wave reflection and
transmission problem.

2. General inhomogeneous wave theory

2.1. Governing equations of pyroelectric media

The governing equations of the pyroelectric media can be found in many literatures [4,6,13–16]. The constitutive and
heat conductive and geometric equations are

sij ¼ Cijklekl�ekijEk�aijW, Di ¼2ijEjþeikleklþtiW,

s¼ aijeijþtiEiþCW=T0, qi ¼�lijW,j, W¼ T�T0,

ekl ¼
1

2
uk,lþul,k

� �
, Ek ¼�j,k (1)

where u, e, j, E, T, T0, q are the displacement, strain, electric potential, electric field, temperature of the medium,
temperature of the environment and heat flow; Cijkl, ekij, Aij, aji, tj, C, lij are the elastic, piezoelectric, permittivity, thermo-
mechanical, thermo-electric, heat capacity and heat conductive coefficients.

In literatures there are several generalized dynamical theories of piezothermoelasticity. In this paper, only two theories
are used. In the inertial entropy theory [15,16] the entropy and conductive equations are

T _sþT _sðaÞ ¼ �qi,i, _sðaÞ ¼ C$ €T=T0, qi ¼�lijT,j (2)

where s(a)is the inertial entropy, $ is the inertial entropy coefficient or the relaxation time. In Lord–Shulman theory [17]
the entropy equation and heat conductive equation are

T _s ¼�qi,i, qiþ$dij _qi ¼�lijT,j (3)

Substituting Eq. (2) or Eq. (3) into the momentum equation and after some manipulations the governing equations of the
pyroelectric media in displacements, electric potential and temperature are obtained as

Cijkluk,ljþekijj,kj�ajiW,j ¼ r €ui, eikluk,li�2ijj,jiþtjW,j ¼ 0

T0aijð_eijþ$1 €eijÞþT0tið
_Eiþ$2

€EiÞþrCð _Wþ$ €WÞ ¼ lijW,ji (4)

In the inertial entropy theory $1=$2=0 and in Lord-Shulman theory $1=$2=$. The relaxation time only affects the
wave attenuation and its effects on the wave velocity and the wave mode are very limited in the stationary reflection and
transmission problems [6]. The numerical results show that the difference in reflection and transmission problem between
these two theories is small for small relaxation time. So in the following we discuss these two theories together and do not
distinguish them.

In piezoelectric materials the governing equations can be obtained from that of pyroelectric materials by making the
terms containing temperature equal to zero. So the problem discussed here for pyroelectric materials can also be used
directly to the piezoelectric materials. In piezoelectric materials Eq. (4) becomes

Cijkluk,ljþekijj,kj ¼ r €ui, eikluk,li�2ijj,ji ¼ 0 (5)

2.2. Homogeneous and inhomogeneous waves

In general a plane attenuation wave f can be expressed as

f ¼ f0 eiðkUx�otÞ ¼ f0 eiðkmxm�otÞ, k¼ Pþ iA, P¼ Pn, A¼ Am

kj ¼ Pnjþ iAmj, P¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPn1Þ

2
þðPn2Þ

2
q

, 4A¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAm1Þ

2
þðAm2Þ

2
q

k2 ¼ kUk¼ P2�A2þ2iPUA, c¼o=P (6)

where f0 is the amplitude of f, o is the circular frequency, c is the phase velocity of the wave, k, with components k1, k2, is a
complex wave vector for a attenuation wave. In general the real part P and imaginary part A are all vectors. P=Pn, where



Fig. 1. Wave propagation direction n, attenuation direction m and the attenuation angle c.
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n¼ ½siny, cosy�T is the wave propagation direction, y is the angle between n and the coordinate axis x2. The plane
perpendicular to n is the equiphase plane; A¼ Am, m¼ ½sinðyþgÞ, cosðyþgÞ�T is the maximum attenuation direction, g is
the attenuation angle and cosg¼ nUm (Fig. 1). The plane perpendicular to m is the equiamplitude plane. If nam, we call
the wave the inhomogeneous wave and k is expressed by (P,A,y,g). If n=m,k=(P+iA)n, we call the wave the homogeneous
wave and kUx=knixi, k=P+iA, so k can be expressed by (P,A,y).

2.3. Inhomogeneous plane wave in pyroelectric materials

For the inhomogeneous plane wave propagated in an infinite space we can assume

uk ¼Uk eiðkmxm�otÞ, j¼Feiðkmxm�otÞ, W¼Yeiðkmxm�otÞ, k¼ 1-3 (7)

where Uk, F, Y are amplitudes of uk, j, W, respectively. Substituting Eq. (7) into Eq. (4) we get the Christoffel’s equation

Kðk,oÞU¼ 0, U¼ U1,U2,U3,U4,U5½ �
T , U4 ¼F, U5 ¼Y

K¼

G11ðkÞ�ro2 G12ðkÞ G13ðkÞ e�1ðkÞ ia�1ðkÞ
G21ðkÞ G22ðkÞ�ro2 G23ðkÞ e�2ðkÞ ia�2ðkÞ
G31ðkÞ G32ðkÞ G33ðkÞ�ro2 e�3ðkÞ ia�3ðkÞ
e�1ðkÞ e�2ðkÞ e�3ðkÞ �2�ðkÞ �it�ðkÞ

T0a�1ðkÞx1 T0a�2ðkÞx1 T0a�3ðkÞx1 �T0t�ðkÞx2 l��irCx

2
66666664

3
77777775

(8)

where

GikðkÞ ¼ Cijklkjkl, e�i ðkÞ ¼ ekijkkkj, a�i ðkÞ ¼ aijkj

t�ðkÞ ¼ tjkj, 2
�ðkÞ ¼ 2jkkkkj, l�ðkÞ ¼ lijkikj

x1 ¼o�io2$1, x2 ¼o�io2$2, x¼o�io2$ (9)

If U has nontrivial solution, then the determinant of the characteristic matrix K must be vanishing, i.e.

K
�� ��¼ 0: (10a)

Substituting kj=Pnj+iAmj from Eq. (6) into (10a) and decomposing 9K9=0 into the real and imaginary parts, we get the
following coupling real equations in (P,A,y,g)

Re K
�� ��¼ 0, Im K

�� ��¼ 0 (10b)

For given (y,g), we have enough equations to solve the unknowns (P,A). Because the expressions of Eq. (10b) are very
tedious, so it is not given here, but it is easily generated by numerical computation. The range of g is determined by that
(P,A) should be nonnegative real value. It is found that g should be in the range ð�p=2,p=2Þ [7,9,18]. However, how to
determine g is still an open problem [11,12].

Eq. (10) is a 5�5 complex matrix, or two coupling 5�5 real matrix. But the electric potential has not its own
independent wave velocity. It is to say that along one propagation direction (the opposite propagation direction is not
considered here) Eq. (10) only has four independent complex eigenvalues, and the eigenvalue corresponding to j is zero,
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which means that j has the independent mode with infinite propagation velocity [5,6]. It is emphasized that j can still
propagate with mechanical and thermal wave velocities through constitutive equations.

As shown above and numerical results, Eq. (10) has four independent complex eigenvalues ki=Pin+iAim (i=1–4). The
four phase velocities ci corresponding to ki are

ci ¼o=Pi, Pi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPin1Þ

2
þðPin2Þ

2
q

(11)

The quasi-longitudinal wave has the fastest phase velocity, the temperature wave has the slowest phase velocity, two
quasi-transversal wave have the middle phase velocity [5,6].

Corresponding to each complex eigenvalue ki the amplitudes (or the eigenvectors) Ui can also be determined through
Eq. (8) and the ratio U1i:U2i:U3i:Fi:Yi is definite, so only one of the five components is undetermined, say U1i, and all other
components can be expressed by it. So the general solutions of the wave propagation problem in an infinite space can be
written as

uk ¼
P4

j ¼ 1 bjUkj eiðkjmxm�otÞ, j¼
P4

j ¼ 1 bjFj eiðkjmxm�otÞ, W¼
P4

j ¼ 1 bjYj eiðkjmxm�otÞ

eiðkjmxm�otÞ ¼ ei ðPjnþ iAjmÞx�ot½ � ¼ e�AjmUx eiðPjnUx�otÞ (12)

where bj(j=1–4) is the undetermined amplitude coefficient and Ui is completely determined by making one, say U1i, of the
five components equal to 1.
2.4. Governing equations in piezoelectric materials

In piezoelectric problem Eq. (8) becomes

Kðk,oÞU¼ 0, U¼ U1,U2,U3,U4½ �
T , U4 ¼F,

K¼

G11ðkÞ�ro2 G12ðkÞ G13ðkÞ e�1ðkÞ

G21ðkÞ G22ðkÞ�ro2 G23ðkÞ e�2ðkÞ

G31ðkÞ G32ðkÞ G33ðkÞ�ro2 e�3ðkÞ

e�1ðkÞ e�2ðkÞ e�3ðkÞ �2�ðkÞ

2
66664

3
77775

(13)

where

GikðkÞ ¼ Cijklkjkl, e�i ðkÞ ¼ ekijkkkj, 2
�ðkÞ ¼ 2jkkkkj (14)

Eq. (12) becomes

uk ¼
X3

j ¼ 1
bjUkj ei kjmxm�otð Þ, j¼

X3

j ¼ 1
bjFj ei kjmxm�otð Þ (15)
Fig. 2. General sketch of incident, reflection and transmission waves.
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3. Reflection/transmission problem in inhomogeneous materials

3.1. Continuous conditions on the interface of pyroelctric materials

Consider the problem of two bounded semi-infinite pyroelectric materials with the interface x2=0 subjected to a
harmonic incident wave of frequency o with an incident angle y, as shown in Fig. 2. The continuous conditions on the
interface are

uI
i ¼ uII

i , jI ¼jII, WI
¼ WII

sI
ijn

I
iþs

II
ijn

II
i ¼ 0, DI

in
I
iþDII

i nII
i ¼ 0, lI

ijW
I
,jn

I
iþl

II
ijW

II
,jn

II
i ¼ 0 (16)

where lI
ijW

I
,j and lII

ijW
II
,j are equivalent to qI

i and qII
i , respectively, where nII

i ¼�nI
i .
3.2. Reflection and transmission waves in pyroelectric materials

Let an incident wave with a wave vector k(0)is in the semi-infinite plane I,x2r0 and expressed by

uðoÞk ¼UðoÞk eiðkð0Þm xm�otÞ, jð0Þ ¼Fð0Þ eiðk 0ð Þ
m xm�otÞ, Wð0Þ ¼Yð0Þ eiðk 0ð Þ

m xm�otÞ (17)

where UðoÞk ,Fð0Þ,Yð0Þ and k 0ð Þ
m are all known. The reflection wave in the semi-infinite plane I, x2r0 can be expressed by

uðrÞk ¼
XN

j ¼ 1
bðrÞj UðrÞkj eiðkðrÞ

jm
xm�otÞ, jðrÞ ¼

XN

j ¼ 1
bðrÞj FðrÞj eiðkðrÞ

jm
xm�otÞ, WðrÞ ¼

XN

j ¼ 1
bðrÞj YðrÞj eiðkðrÞ

jm
xm�otÞ (18)

And the transmission wave in the semi-infinite plane II, x2Z0 can be expressed by

uðtÞk ¼
XN

j ¼ 1
bðtÞj UðtÞkj eiðkðtÞ

jm
xm�otÞ, jðtÞ ¼

XN

j ¼ 1
bðtÞj FðtÞj eiðkðtÞ

jm
xm�otÞ, WðtÞ ¼

XN

j ¼ 1
bðtÞj YðtÞj eiðkðtÞ

jm
xm�otÞ (19)

In Eqs. (18) and (19) N is the number of the independent waves which will contain four bulk waves and one surface
wave, which is revealed in the reflection and transmission problem of waves. The behavior of the surface wave can be seen
in [19,20]. It is obvious that

uI
k ¼ uðoÞk þuðrÞk , uII

k ¼ uðtÞk , jI ¼jð0Þ þjðrÞ, jII ¼jðtÞ, WI
¼ Wð0Þ þWðrÞ,WII

¼ WðtÞ

sI
ij ¼ s

ðoÞ
ij þs

ðrÞ
ij , sII

ij ¼ s
ðtÞ
ij , DI

i ¼DðoÞi þDðrÞi , DII
i ¼DðtÞi (20)

Substituting Eqs. (17)–(20) into (16) one can get

k 0ð Þ
1 ¼ k rð Þ

j1 ¼ k tð Þ
j1 , k að Þ

j1 ¼ P að Þ
j1 þ iA að Þ

j1 ¼ P að Þ
j n1þ iA að Þ

j m1, ða¼ r,t; j¼ 1�NÞ (21)

which is also shown in Fig. 2. Decomposing Eq. (21) into real and imaginary parts, we get

Pð0Þ sinyð0Þ ¼ PðrÞj sinyðrÞj ¼ PðtÞj sinyðtÞj

Að0Þ sinðyð0Þ þgð0ÞÞ ¼ AðrÞj sinðyðrÞj þg
ðrÞ
j Þ ¼ AðtÞj sinðyðtÞj þg

ðtÞ
j Þ ðj¼ 1�NÞ (22)
Fig. 3. General sketch of incident, reflection, transmission and surface waves.
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From Eqs. (11) and (22) we can get the generalized Snell’s law (Fig. 3):

sinyð0Þ

cð0Þ
¼

sinyðrÞj

cðrÞj

¼
sinyðtÞj

cðtÞj

, cð0Þ ¼
o

Pð0Þ
, cðrÞj ¼

o
PðrÞj

, cðtÞj ¼
o

PðtÞj

ðj¼ 1�NÞ (23)

In general yð0ÞayðrÞj due to the anisotropic behavior of materials. So that the 4N real unknowns, yðrÞj ,yðtÞj ,gðrÞj ,gðtÞj , for each
j can be determined by Eqs. (22) and (23).

It is emphasized that in two cases unknowns are different. Case (1): The problem of the bulk waves propagating in an

infinite space: In this case Eq. (10) is for given (y,g) to solve unknowns (P,A). According to Eq. (6) in this case though kj1 and
kj2 are complex numbers, but they are only related to two real constant Pj and Aj, or complex constants kj1 and kj2 are

related each other. There only four pair (Pj,Aj) can be obtained, so we have k að Þ
j ¼ P að Þ

j nþ iA að Þ
j m , where j=1�4; a=r,t. Case

(2): The problem of the reflection and transmission problem: From Eq. (21) it is known that kj1 is given, i.e. k 0ð Þ
1 ¼ k rð Þ

j1 ¼ k tð Þ
j1 ,

the components k rð Þ
j2 and k tð Þ

j2 are unknown complex constants and not related to kj1. It is fortunate that in this case five k rð Þ
j2

and k tð Þ
j2 (j=1�5) can be obtained and an independent surface wave is revealed in them, which can supplement the lack of

the independent bulk electric wave to satisfy boundary conditions. It is also noted that in case (1) if kj1 is given , then kj2 is
determined only by one real number; however, in case (2) given kj1, kj2 is still determined by two real number or one
complex number. So in case (2) we can get an extra independent surface wave, but in case (1) we cannot.

All the physical variables in the incident wave are known. In the reflection and transmission waves there are five

unknowns b rð Þ
j and b tð Þ

j corresponding to four bulk waves and one surface wave, so that we have total 10 complex

unknowns to satisfy 10 complex interface continuous conditions (see Eq. (16)). Therefore, the number of the boundary
equations is equal to the number of unknowns. This situation shows that the reflection and transmission waves are
complete.
3.3. Reflection and surface waves in vacuum/semi-infinite pyroelectric materials

If the medium II is a vacuum and on the boundary (interface) the stress, electric displacement and heat flow are all free,
the wave cannot transmit to vacuum from the medium I, so that all variables in vacuum can be neglected. In this case there
is no transmission waves, i.e.

sðtÞij nII
i ¼ s

II
ijn

II
i ¼DðtÞi nII

i ¼DII
i nII

i ¼ lII
ijW
ðtÞ
,j nII

i ¼ lII
ijW

II
,jn

II
i ¼ 0 (24)

and the boundary conditions on the boundary x2=0 of the pyroelectric medium become

s2jn2 ¼ sðoÞ2j þs
ðrÞ
2j

� �
n2 ¼ 0, D2n2 ¼ DðoÞ2 þDðrÞ2

� �
n2 ¼ 0

l2jW,jn2 ¼ l2j WðoÞ,j þW
ðrÞ
,j

� �
n2 ¼ 0, j¼ 1-3, n2 ¼ 1 (25)
3.4. The reflection/transmission waves in piezoelectric materials

In piezoelectric materials Eqs. (17)–(19) become

uðoÞk ¼UðoÞk eiðkð0Þm xm�otÞ, jð0Þ ¼Fð0Þ ei kð0Þm xm�ot
� �

uðrÞk ¼
X4

j ¼ 1
bðrÞj UðrÞkj eiðkðrÞ

jm
xm�otÞ, jðrÞ ¼

X4

j ¼ 1
bðrÞj FðrÞj eiðkðrÞ

jm
xm�otÞ

uðtÞk ¼
X4

j ¼ 1
bðtÞj UðtÞkj eiðkðtÞ

jm
xm�otÞ, jðtÞ ¼

X4

j ¼ 1
bðtÞj FðtÞj eiðkðtÞ

jm
xm�otÞ (26)

The continuous conditions on the interface Eqs. (16) and (20) become

uðoÞk þuðrÞk ¼ uðtÞk , sðoÞij þs
ðrÞ
ij

� �
nI

i ¼ s
ðtÞ
ij nII

i , jð0Þ þjðrÞ ¼jðtÞ, DðoÞi þDðrÞi

� �
nI

i ¼DðtÞi nII
i (27)

It is emphasized that there are three elastic bulk waves propagating in the homogeneous infinite piezoelectric materials
and the elastic bulk waves do not attenuate. So in Eqs. (13) and (26) we can get three real wave vectors ki(i=1–3). But in the
reflection/transmission problem of wave propagation in piezoelectric materials, except three bulk waves with real wave
vector ki, a surface wave with complex wave vector ks will appear. So in the reflection/transmission problem of wave
propagation in piezoelectric materials we should use uðrÞk ,jðrÞ,uðtÞk ,jðtÞ with complex wave vector in Eqs. (26) and (27).
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4. Two dimensional reflection problem in vacuum/semi-infinite pyroelectric materials

4.1. Fundamental formula in two dimensional reflection problem

In two-dimensional case all the variables are independent to x3 and u3 is neglected, so there is only one quasi-
transversal wave. In this case the Christoffel’s equation (8) becomes

Kðk,oÞU¼ 0, U¼ U1,U2,U4,U5½ �
T , U4 ¼F, U5 ¼Y

K¼

G11ðkÞ�ro2 G12ðkÞ e�1ðkÞ ia�1ðkÞ
G21ðkÞ G22ðkÞ�ro2 e�2ðkÞ ia�2ðkÞ
e�1ðkÞ e�2ðkÞ �2�ðkÞ �it�ðkÞ

T0a�1ðkÞx1 T0a�2ðkÞx1 �T0t�ðkÞx2 l��irCx

2
66664

3
77775

(28)

It is noted that in Eq. (28) kð0Þ1 ¼ kðrÞj1 ðj¼ 1�4Þ.
The boundary conditions (25) on the boundary of the pyroelectric materials become

sðoÞi2 þs
ðrÞ
i2 ¼ 0, DðoÞ2 þDðrÞ2 ¼ 0, li2 WðoÞ,i þW

ðrÞ
,i

� �
¼ 0, i¼ 1,2 (29)

From Eqs. (1), (17), (18) and (29) we get

Ci2klk
ð0Þ
l UðoÞl þeki2kð0Þk Fð0Þ þ iai2Y

ð0Þ
þ
X4

j ¼ 1
bðrÞj Ci2klk

ðrÞ
jl UðrÞkj þeki2kðrÞjk F

ðrÞ
j þ iai2Y

ðrÞ
j

� �
¼ 0, i¼ 1,2

e2klk
ð0Þ
l U oð Þ

k �22jk
ð0Þ
j Fð0Þ�itiY

ð0Þ
þ
X4

j ¼ 1
bðrÞj e2klk

ðrÞ
jl UðrÞkj �22lk

ðrÞ
jl F

ðrÞ
j �it2Y

ðrÞ
j

� �
¼ 0

li2kð0Þi Yð0Þ þ
X4

j ¼ 1
bðrÞj li2kðrÞji Y

ðrÞ
j ¼ 0 (30)

Eq. (30) contains 4 complex equations with 4 complex unknowns bðrÞ1 ,bðrÞ2 ,bðrÞ3 ,bðrÞ4 � bðsÞ, so the problem is solved.

4.2. Example

As an example we discuss the two-dimensional reflection problem from the interface of BiTiO3/ vacuum. When ox2 is
the pole axis, the material constants of BiTiO3 in Voigt compact form for two-dimensional problem are (the usual three
subscript piezoelectric coefficients in tensor form are changed to two subscript piezoelectric coefficients in Voigt vector
form as: e211) e21, e222) e22, e112) e16)

C11 ¼ 15:0� 1010 Pa, C12 ¼ 6:6� 1010 Pa, C22 ¼ 14:6� 1010 Pa, C66 ¼ 4:3� 1010 Pa,

e21 ¼�4:35C=m2, e22 ¼ 17:5C=m2, e16 ¼ 11:4C=m2, 211 ¼ 9:87� 10�9 F=m,

222 ¼ 11:15� 10�9 F=m, a11 ¼ 8:53� 10�6 1=K, a22 ¼ 1:99� 10�6 1=K,

l11 ¼ 1:1 J=msK, l22 ¼ 3:5 J=msK, t2 ¼ 5:53� 10�3 C=m2 K, C ¼ 500 J=kgK

r¼ 5700kg=m3, $¼ 10�10 s, o¼ 2p� 1061=s (31)

The thermo-mechanical coupling coefficients aij can be calculated as follows:

a11 ¼ C11þC12ð Þa11þ C12þe21ð Þa22, a22 ¼ 2C12a11þ C22þe22ð Þa22 (32)

Three bulk wave vectors, phase velocities and the ratios of the quasi-longitudinal, quasi-transversal, temperature wave
amplitudes for y=201, g=01 propagating in an infinite space are

k1 ¼ ð390:37, 1072:537Þ; c1 ¼ 5504:97

k2 ¼ ð774:57þ1:14� 10�7i, 2128:11þ3:12� 10�7iÞ; c2 ¼ 2774:42

k3 ¼ ð570019:87þ569661:83i, 1:57� 106
þ1:57� 106iÞ; c3 ¼ 3:77

(33)

It can be seen from Eq. (33) that the attenuation of the elastic waves is very small, but the attenuation of
the temperature wave is very large. Any one of the three waves corresponding to k1, k2, k3 can be used as the incident
wave.
(1)
 As an example the incident quasi-longitudinal wave is discussed. The incident waves are

uðoÞ1 ¼UðoÞ11 eiðkð0Þm xm�otÞ, uðoÞ2 ¼UðoÞ21 eiðk 0ð Þ
m xm�otÞ, Wð0Þ ¼Yð0Þ1 eiðkð0Þm xm�otÞ, jð0Þ ¼Fð0Þ1 eiðkð0Þm xm�otÞ

UðoÞ11 : UðoÞ21 : Y
ð0Þ
1 : Fð0Þ1 ¼ ð2:11� 10�10

�2:51� 10�19iÞ

: ð6:28� 10-10
�6:14� 10�19iÞ : ð�1:27� 10�11

�0:000054iÞ : ð1:0Þ (34)
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From Eq. (28) we get the wave vectors of the reflected wave are

kðrÞ1 ¼ ð390:37, �1072:53�4:04� 10�8iÞ; c1 ¼ 5504:97

kðrÞ2 ¼ ð390:37, �2229:26�9:56� 10�8iÞ; c2 ¼ 2776:26

kðrÞ3 ¼ ð390:37, �1597811:46�1596807:85iÞ; c3 ¼ 3:93

kðrÞ4 � kðrÞs ¼ ð390:37, 8:68� 10�9
�368:07iÞ; cs ¼ 16095:46 (35)

where the components kðrÞ1 , kðrÞ2 and kðrÞ3 are just wave vectors of bulk waves, kðrÞ4 � kðrÞs is the wave vectors of the new
surface wave which attenuates along x2 direction. It is also noted that in Eq. (35) the relation k 0ð Þ

1 ¼ k rð Þ
j1 j¼ 1�4ð Þ

is used.
The ratios of the bulk and surface wave amplitudes for y=201,g=01 are

UðrÞ11 : UðrÞ12 : Y
ðrÞ
1 : FðrÞ1 ¼ ð�2:11� 10�10

þ1:50� 10�19iÞ :

ð6:28� 10�10
�3:24� 10�19iÞ : ð1:27� 10�11

þ5:39� 10�5iÞ : ð1:0Þ
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UðrÞ21 : UðrÞ22 : Y
ðrÞ
2 : FðrÞ2 ¼ ð6:78� 10�9

þ5:07� 10�17iÞ :

ð1:11� 10�9
þ7:61� 10�18iÞ : ð�2:97� 10�10

�3:05� 10�4iÞ : ð1:0Þ

UðrÞ31 : UðrÞ32 : Y
ðrÞ
3 : FðrÞ3 ¼ ð�6:32� 10�14

þ6:32� 10�14iÞ :

ð5:80� 10�11
�4:54� 10�18iÞ : ð29:27�29:29iÞ : ð1:0Þ

UðrÞ41 : UðrÞ42 : Y
ðrÞ
4 : FðrÞ4 ¼ ð�1:18� 10�21

�4:57� 10�12iÞ

: ð2:92� 10�12
þ3:92� 10�22iÞ� : ð0:000021þ3:55� 10�13iÞ : ð1:0Þ (36)

For different (y,g), the numerical values in Eqs. (33)–(36) are different. Their numerical values should be computed by
numerical calculation for every case.
Comparing Eqs. (33) and (35) it is found that though three bulk wave velocities are almost the same in two equations,
but their amplitude ratios are different. This situation shows that the amplitude ratios of the bulk reflection waves in
the reflection problem are different with the waves propagating in free space.
Fig. 4 shows the variations of the modulus of ratios ðbð1Þ,bð2Þ,bð3ÞÞ of the reflected wave amplitude coefficients and the
modulus of ratio b(s) of the surface wave amplitude coefficients with y for g=0. Fig. 5 shows the variations of ratios of
the reflected and surface wave energy flows e 1ð Þ,e 2ð Þ,e 3ð Þ,e sð Þwith y for g=0. The general expressions of the wave energy
flow and its ratio of the reflected wave with the incident wave are defined as

_W i ¼�ski _ukþj _Di�likW,kW=T0, eðjÞ ¼/ _W 2
ðjÞ
S=/ _W 2

ð0Þ
S (37)

where the symbol /S expresses the average value over one period of a physical variable, _W 2
ðjÞ

is the energy flow
component corresponding to b(j) along x2 direction.
The difference of the results for g=0 and a0 is very small for small relaxation time, so we only give the results for g=0.
This means that the solution can be discussed directly by the homogeneous wave theory for the problem with small
relaxation time.
From these figures it is seen that: (1) In the wave reflection problem from an interface between pyroelectric medium
and vacuum, a surface wave is generated. From the generalized Snell’s law Eq. (23) and numerical results it is seen that
the phase velocity cs of the surface wave is strongly dependent to the incident angle y of the quasi-longitudinal wave:
y-p=2, cs-c1;y-0, cs-N,but the amplitudes of the surface wave are approach zero.
(2)
 When the incident wave is elastic wave, the component e(2) of the energy flow along the direction x2 from the
boundary x2=0 is mainly contributed by the elastic wave modes, the effect of the reflected temperature and surface
wave modes is very small. This is just the character of a surface wave. (3) There has only the quasi-longitudinal
reflection wave for the incident wave with y=0. (4) The attenuation angle g almost does not play role when the
incident wave is elastic wave.
When the wave vector k, the ratios of the bulk and surface wave amplitudes U rð Þ
i1 : U rð Þ

i2 : Y rð Þ
i : F rð Þ

i and the amplitude
coefficient b(j)(i=1–4) are solved, from Eq. (18) it is easy to get the solution of the reflection wave.
5. Conclusions

In this paper, the reflection and transmission theories of waves in pyroelectric and piezoelectric medium are studied. In
this problem the puzzle is that the electric potential does not have its own independent wave mode under the postulation
of quasi-static electric field. There are only four independent wave modes for the five-order Christoffel’s equation of waves
propagated in an infinite homogenous space. However, in the reflection and transmission problem there are five complex
boundary conditions in the pyroelectric medium. It is a problem whether the reflection and transmission problem in the
pyroelectric medium is solvable. In this paper we find that in the reflection and transmission wave problem a surface wave
mode in each side of the boundary surface will be revealed except the four bulk wave modes propagating in an infinite
homogenous space due to the general Snell’s law. The surface waves have the same wave vector component with the
incident waves on the interface plane. The surface wave was not found in the previous literatures. The surface wave and
the bulk waves together can just satisfy the boundary conditions. The two dimensional reflection problem of waves at the
interface between the semi-infinite pyroelectric medium and vacuum is researched in greater detail. The numerical
example of the two-dimensional reflection problem from the interface of BiTiO3/ vacuum is given. Our numerical example
shows that there exists a surface wave mode certainly. It is also found that the ratios of the amplitudes of the bulk waves in
the reflection problem are different with that in the propagation problem in an infinite homogenous space. The difference
of the results for the attenuation angle g=0 and a0 is very small for small relaxation time, so in many engineering
problems we can use the homogeneous wave theory conveniently.
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